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We introduce functions of bounded variation on median algebras and study some 
properties for median pretrees. We show that if X is a compact median pretree 
(e.g., a dendron) in its shadow topology then every function f : X → R of 
bounded variation has the point of continuity property (Baire 1, if X, in addition, 
is metrizable). We prove a generalized version of Helly’s selection theorem for a 
sequence of functions with total bounded variation defined on a Polish median 
pretree X.
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1. Introduction

Our aim is to introduce functions of bounded variation on median algebras and pretrees (in particular, 
on dendrons). This was motivated by recent papers [20,13] and especially by a joint work with E. Glasner 
[13, Remark 4.11], where we deal with some applications of median pretrees in topological dynamics.

In the present work we prove the following theorems (3.13 and 3.15 below).

Theorem A. Let X be a median pretree (e.g., dendron or a linearly ordered space) such that its natural 
shadow topology is compact or Polish. Then every function f : X → R with bounded variation has the point 
of continuity property (Baire 1 class function, if X is Polish).
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Theorem B (Generalized Helly’s selection theorem). Let X be a Polish (e.g., compact metrizable) median 
pretree. Then every sequence {fn : X → [c, d]}n∈N of functions with total bounded variation ≤ r has a 
pointwise converging subsequence, which converges to a function with variation ≤ r.

Recall that a topological space X is said to be Polish if it is homeomorphic to a separable complete 
metric space. A continuum is a compact Hausdorff connected space. A continuum D is said to be a dendron
[25] if every pair of distinct points u, v can be separated in D by a third point w. A metrizable dendron 
is called a dendrite. The class of dendrons is an important class of 1-dimensional treelike compact spaces, 
[25,6]. Group actions on dendrites is an attractive direction in dynamical systems theory (see [9,13] and 
references therein).

We define in Section 3 (Definitions 3.3 and 3.4) functions of bounded variation on median algebras. 
In Section 2, we recall definition and auxiliary properties of median pretrees. As to the point of continu-
ity property and fragmented functions, see Subsection 2.3. Note that such functions play a major role in 
Bourgain-Fremlin-Talagrand theory, [2] which in turn is strongly related to the classical work of Rosenthal 
[23]. One of the results from [2] allows us to derive Theorem B from Theorem A.

Weaker versions of these theorems for linearly ordered spaces and BV functions were proved in [20] and 
for median pretrees and monotone functions in [13].

2. Related structures

Pretree (in terms of B.H. Bowditch) is a useful treelike structure which naturally generalizes several 
important structures including linear orders and the betweenness relation on dendrons.

2.1. Pretrees

Definition 2.1. By a pretree (see for example [3,18]), we mean a pair (X, R), where X is a set and R is a 
ternary relation on X (we write 〈a, b, c〉 to denote (a, b, c) ∈ R) satisfying the following three axioms:

(B1) 〈a, b, c〉 ⇒ 〈c, b, a〉.
(B2) 〈a, b, c〉 ∧ 〈a, c, b〉 ⇔ b = c.
(B3) 〈a, b, c〉 ⇒ 〈a, b, d〉 ∨ 〈d, b, c〉.

In [1] such a ternary relation is called a B-relation.

It is convenient to use also an interval approach. For every u, v ∈ X define

[u, v]X := {x ∈ X : 〈u, x, v〉}.

Sometimes we write simply [u, v], where X is understood.

Remark 2.2. The conditions (A0), (A1), (A2), (A3), as a system of axioms, are equivalent to the above 
definition via (B1), (B2), (B3) (see [18]). In every pretree (X, R) for every a, b, c ∈ X, we have

(A0) [a, b] ⊇ {a, b}.
(A1) [a, b] = [b, a].
(A2) If c ∈ [a, b] and b ∈ [a, c] then b = c.
(A3) [a, b] ⊆ [a, c] ∪ [c, b].
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Every subset Y of X carries the naturally defined betweenness relation. In this case, the corresponding 
intervals are [a, b]Y = [a, b] ∩ Y for every a, b ∈ Y .

For every linear order ≤ on a set X, we have the induced pretree (X, R≤) defined by

〈a, b, c〉 ⇔ (a ≤ b ≤ c) ∨ (c ≤ b ≤ a).

Note that the opposite linear order defines the same betweenness relation.
A subset A of a pretree X is said to be convex if [a, b] ⊂ A for every a, b ∈ A. Intersection of convex 

subsets is convex (possibly empty). For a subset A ⊂ X, the convex hull co(A) is the intersection of all 
convex subsets of X which contain A.

Let us say that a, b, c ∈ X are collinear if

a ∈ [b, c] ∨ b ∈ [a, c] ∨ c ∈ [a, b].

A subset Y of X is linear (see [18, Section 3]) if all a, b, c ∈ Y are collinear.
By a direction on a linear subset Y in a pretree X, we mean a linear order ≤ on Y such that, R≤ is just 

the given betweenness relation on Y . Each nontrivial linear subset Y in a pretree X admits precisely two 
directions.

Following A.V. Malyutin [18] (which in turn follows to the terminology of P. de la Harpe and J.-P. 
Preaux), we define the so-called shadow topology. Alternative names in related structures are: Lawson’s 
topology and observer’s topology. See the related discussion in [18].

Given an ordered pair (u, v) ∈ X2, u �= v, let

Sv
u := {x ∈ X : u ∈ [x, v]}

be the shadow in X defined by the ordered pair (u, v). Pictorially, the shadow Sv
u is cast by a point u when 

the light source is located at the point v. The family S = {Sv
u : u, v ∈ X, u �= v} is a subbase for the closed 

sets of the topology τs. The complement of Sv
u is said to be a branch

ζvu := X \ Sv
u = {x ∈ X : u /∈ [x, v]}.

The set of all branches {ζvu : u, v ∈ X, u �= v} is a subbase of the shadow topology.
In the case of a linearly ordered set, we get the interval topology. In general, for an abstract pretree, the 

shadow topology is often (but not always) Hausdorff. Furthermore, by [18, Theorem 7.3] a pretree equipped 
with its shadow topology is Hausdorff if and only if, as a topological space, it can be embedded into a 
dendron.

Lemma 2.3. Let X be a pretree.

(1) [18, Lemma 1.16 (A6, A7)] For every c ∈ [a, b] we have:
(a) [a, c] ∩ [c, b] = {c};
(b) [a, c] ∪ [c, b] = [a, b].

(2) [18, Lemma 2.8] For every subset A ⊂ X its convex hull is

co(A) = ∪{[a, b] : a, b ∈ A}.

(3) [18, Lemma 3.3.4] [a, b] is a convex linear subset for every a, b ∈ X.
(4) [18, Lemma 5.10.2] Every branch is convex. Hence, every pretree is locally convex.
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(5) [18, Prop. 6.5] Let S be a subset in a pretree X. Then the shadow topology on S (regarded as a pretree 
with the structure induced by that of X) is contained in the relativization of the shadow topology on X
to S. If S is convex in X, then the two topologies above coincide.

2.2. Median algebras and pretrees

A median algebra (see, for example, [24,3]) is a pair (X, m), where the function m : X3 → X satisfies the 
following three axioms:

(M1) m(x, x, y) = x.
(M2) m(x, y, z) = m(y, x, z) = m(y, z, x).
(M3) m(m(x, y, z), u, v) = m(x, m(y, u, v), m(z, u, v)).

This concept has been studied for a long time (Birkhoff-Kiss, Grau, Isbell) and has applications in 
abstract convex structures, [24].

Every distributive lattice (L, ∧, ∨) (e.g., any power set P (S) := {A : A ⊂ S}) is a median algebra with 
the median operation

m(a, b, c) := (a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a).

A very particular case of this is a linearly ordered set.
Let (X, m) be a median algebra. A subset Y ⊆ X is a subalgebra if it is median-closed in X. In a median 

algebra (X, m) for every subset A, there exists the subalgebra sp(A) generated by A. This is the intersection 
of all subalgebras containing A.

In every median algebra (X, m), we have the naturally defined intervals

[a, b] := {m(a, x, b) : x ∈ X}.

This leads to the natural ternary relation Rm defined by 〈a, c, b〉 iff c = m(a, c, b), equivalently 〈a, c, b〉 iff c ∈
[a, b]. Note that not every median algebra is a pretree under the relation Rm. A subset C of a median algebra 
is convex if [a, b] ⊂ C for every a, b ∈ C. Every convex subset is a subalgebra.

For every triple a, b, c in a pretree X the median m(a, b, c) is the intersection

m(a, b, c) := [a, b] ∩ [a, c] ∩ [b, c].

When it is nonempty the median is a singleton, [3,18]. A pretree (X, R) for which this intersection is always 
nonempty is called a median pretree.

Remarks 2.4.

(1) Every median pretree (X, R) is a median algebra. The corresponding ternary relation Rm induced by 
the median function coincides with R.

(2) A map f : X1 → X2 between two median algebras is monotone (i.e., f [a, b] ⊂ [f(a), f(b)]) if and only if 
f is median-preserving ([24, page 120]) if and only if f is convex ([24, page 123]) (convexity of f means 
that the preimage of a convex subset is convex).

(3) Every median pretree is Hausdorff (and normal) in its shadow topology ([18, Theorem 7.3]).
(4) [18, Prop. 6.7] In a median pretree, the convex hull of a closed set is closed. In particular, the intervals 

[a, b] are closed subsets.
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(5) It is a well-known (nontrivial) fact that for every finite subset F ⊂ X in a median algebra the induced 
subalgebra sp(F ) is finite, [24].

A compact (median) pretree is a (median) pretree (X, R) for which the shadow topology τs is compact. 
Polish pretrees can be defined similarly.

Examples 2.5.

(1) Every dendron D is a compact median pretree with respect to the standard betweenness relation RB

(w is between u and v in X if w separates u and v or if w ∈ {u, v}). Its shadow topology is just the 
given compact Hausdorff topology on D (see [25,18]).

(2) Every linearly ordered set (L, ≤) is a median pretree with respect to the median m≤(a, b, c) = b iff 
a ≤ b ≤ c or c ≤ b ≤ a. Its shadow topology is the usual interval topology of the order. We say that a 
subset Y of a median algebra (X, m) is a linear subset if there exists a linear order ≤ on Y such that 
the induced median function m≤ and the restriction of m agree on Y .

(3) Let X be a Z-tree (a median pretree with finite intervals [u, v]). Denote by Ends(X) the set of all its 
ends. According to [18, Section 12] the set X ∪ Ends(X) carries a natural τs-compact median pretree 
structure.

2.3. Fragmented functions

Recall the definition of fragmentability which comes from Banach space theory [16,21,15] and effectively 
used also in dynamical systems theory [19,11,12]. We give only the case of functions into metric spaces. 
Lemma 2.8 is true also where the codomain is a uniform space.

Definition 2.6. Let f : (X, τ) → (M, d) be a function from a topological space into a metric space. We say 
that f is fragmented if for every nonempty subset A ⊂ X and every ε > 0 there exists a τ -open subset 
O ⊂ X such that O∩A is nonempty and diam(f(O∩A)) < ε. If M = R then we use the notation f ∈ F(X).

Lemma 2.7.

(1) [11] When X is compact or Polish, then f : X → R is fragmented iff f has the point of continuity 
property (i.e., for every closed nonempty A ⊂ X the restriction f |A : A → R has a continuity point).

(2) [8, p. 137] For every Polish space X, we have F(X) = B1(X), where B1(X) is the set of all Baire 1 
functions X → R.

(3) [8, Lemma 3.7] Let X be a compact or a Polish space. Then the following conditions are equivalent for 
a function f : X → R.
(a) f /∈ F(X);
(b) there exists a closed subspace Y ⊂ X and real numbers α < β such that the subsets f−1(−∞, α) ∩Y

and f−1(β, ∞) ∩ Y are dense in Y .
(4) [2, Section 3] For every Polish space X, every pointwise compact subset of B1(X) is sequentially compact 

(see also [8, Thm 3.13]).

Lemma 2.8. Let f : (X, τ) → (M, d) be a function from a topological space into a metric space. Suppose 
that X =

⋃n
i=1 Yi is a finite covering of X such that every Yi is closed in X and every restriction function 

f |Yi
: (Yi, τ |Yi

) → (M, d) is fragmented. Then f : (X, τ) → (M, d) is also fragmented.
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Proof. Since finite union of closed subsets is closed one may reduce the proof to the case of two subsets. 
So, assume that X = Y1 ∪ Y2 and f |Y1 : Y1 → M, f |Y2 : Y2 → M are fragmented. Let ε > 0 and A ⊂ X be a 
nonempty subset. We have to show that

∃O ∈ τ O ∩A �= ∅ and diam(f(O ∩A)) < ε. (2.1)

There are two cases: (a) A ⊆ Y1 ∩ Y2 and (b) A � Y1 ∩ Y2. In the first case, using the fragmentability of 
f |Y1 , choose O ∈ τ such that (O ∩ Y1) ∩ A �= ∅ and diam(f((O ∩ Y1) ∩ A)) < ε. Since in case (a) we have 
A ⊂ Y1, then (O ∩ Y1) ∩A = O ∩A. Hence, the condition (2.1) is satisfied.

Now consider (b) A � Y1 ∩ Y2. Then (A ∩ Y1) \ Y2 �= ∅ or (A ∩ Y2) \ Y1 �= ∅. We will check only the first 
possibility (the second is similar). Using the fragmentability of f |Y1 , choose for the subset (A ∩Y1) \Y2 ⊂ Y1
an open subset U ∈ τ in X such that

(U ∩ Y1) ∩ ((A ∩ Y1) \ Y2) �= ∅

and diam(f((U ∩ Y1) ∩ (A ∩ Y1) \ Y2))) < ε. Now observe that

(U ∩ Y1) ∩ ((A ∩ Y1) \ Y2) = (U ∩ Y1) ∩ (A ∩ Y c
2 ) = (U ∩ Y c

2 ) ∩A.

Then O := U ∩ Y c
2 is the desired open subset in X. �

3. Functions of bounded variation

3.1. Functions on linearly ordered sets

Definition 3.1. [20] Let (X, ≤) be a linearly ordered set. We say that a bounded function f : (X, ≤) → R

has variation Υ≤(f) not greater than r if

n−1∑

i=1
|f(xi) − f(xi+1)| ≤ r

for every choice of x1 ≤ x2 ≤ · · · ≤ xn in X.

The following was proved in [20] using the particular case of order-preserving maps and Jordan type 
decomposition for functions with BV.

Theorem 3.2. [20] Let (K, ≤) be a compact linearly ordered topological space (with its interval topology). 
Every function f : K → R with bounded variation is fragmented.

3.2. Functions on median algebras

We examine two definitions (3.3 and 3.4) of BV for median algebras. Each of these definitions naturally 
generalize Definition 3.1.

Let (X, m) be a median algebra and R be the induced betweenness relation (as in Remark 2.4.1), where, 
as before, we write 〈a, x, b〉 instead of (a, x, b) ∈ R. In particular, for dendrons it is exactly the standard 
betweenness relation. Recall that

〈a, x, b〉 ⇔ x ∈ [a, b] ⇔ m(a, x, b) = x.
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Now, let Y ⊆ X be a subset. A two-element subset (doublet) {a, b} ⊂ Y is said to be Y -adjacent (or 
Y -gap) if 〈a, c, b〉 ⇒ c = a or c = b for every c ∈ Y . In terms of intervals: [a, b]X ∩ Y = {a, b}. By adj(Y ) we 
denote the set of all Y -adjacent doublets.

Definition 3.3. Let f : X → R be a bounded real valued function on a median algebra (X, m) and σ ⊂ X is 
a finite subalgebra. By the variation Υ(f, σ) of σ, we mean

Υ(f, σ) :=
∑

{a,b}∈adj(σ)

|f(a) − f(b)|. (3.1)

The least upper bound

sup{Υ(f, σ) : σ is a finite subalgebra in X}

is the variation of f . Notation: Υ(f). If it is bounded, say if Υ(f) ≤ r for a given positive r ∈ R, then 
we write f ∈ BVr(X). If f(X) ⊂ [c, d] for some c ≤ d, then we write also f ∈ BVr(X, [c, d]). One more 
notation: BV (X) :=

⋃
r>0 BVr(X).

Note that BV (X) is closed under linear operations.
Every linear subset in a median algebra is a subalgebra. So, Definition 3.3 naturally extends Definition 3.1. 

Another natural attempt for a generalization would be considering the sums Υ(f, σ) only for finite linear 
subsets σ (and not for all finite subalgebras) as in the following definition.

Definition 3.4. In terms of Definition 3.3, consider the least upper bound

sup{Υ(f, σ) : σ is a finite linear subset in X}.

Let us call it the linear variation of f . Notation: ΥL(f). Then BV L
r (X) and BV L(X) are understood like 

in Definition 3.3.

Since ΥL(f) ≤ Υ(f) we get BV (X) ⊆ BV L(X). In general, this inclusion is proper for median pretrees. 
That is, BV (X) �= BV L(X) (Example 3.8.3).

Every bounded monotone function f : X → R on every median algebra X belongs to BV L
r (X), with 

r = diam(f(X)), because the restriction of f on a linear subset with a direction is order preserving or order 
reversing. In fact, even f ∈ BV (X) if X is a median pretree (Corollary 3.10.2). It is not true, in general, 
for median algebras (Example 3.8.4).

Directly from the definitions, we have Υ(f |Y ) ≤ Υ(f) and ΥL(f |Y ) ≤ ΥL(f) for every median algebra 
X, its subalgebra Y and a function f : X → R.

Remarks 3.5.

(1) In [10] the authors study a treelike system – “rooted nonmetric tree”. In paragraph 7.4 they define 
functions of bounded variation on such objects. This definition essentially differs from our definition.

(2) In this article, we examine Definition 3.3 mainly in the case when X is a median pretree. Note that for 
functions on multidimensional objects (subsets of Rn) there are several definitions for BV functions (see, 
for example, Vitali-Hardy-Krause type variation in [5,17,7] and references therein). Such definitions and 
ideas probably would be useful also for abstract median algebras or for metric median spaces with finite 
rank in the sense of [4].

Sometimes, we use the following relative version of Definition 3.3.
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Definition 3.6. Let S ⊂ X be a subset of a median algebra X and P (S) is the power set. By an S-variation
Υ(f, σ) of σ on S, we mean

Υ(f, σ)|S :=
∑

{a,b}∈adj(σ)∩P (S)

|f(a) − f(b)|. (3.2)

The variation of f on S ⊂ X can be defined similarly which we denote by Υ(f)|S .

Clearly, Υ(f, σ)|S ≤ Υ(f, σ) and Υ(f)|S ≤ Υ(f) for every S ⊂ X.
Let us say that the sets A and B are almost disjoint if A ∩B is at most a singleton.

Lemma 3.7. Let σ be a finite subalgebra in a median algebra X.

(1) For every almost disjoint subsets S1, S2 in X, we have

Υ(f, σ) ≥ Υ(f, σ)|S1 + Υ(f, σ)|S2 .

(2) Υ(f, σ)|S ≤ Υ(f, σ ∩ S) for every subalgebra S ⊂ X.
(3) Υ(f, σ)|C = Υ(f, σ ∩ C) for every convex subset C ⊂ X.
(4) Υ(f, σ) ≥ Υ(f, σ ∩ C1) + Υ(f, σ ∩ C2) for every almost disjoint convex subsets C1, C2 of X.

Proof. (1) Trivial.
(2) σ ∩ S is a finite subalgebra of X. Hence, Υ(f, σ ∩ S) is well defined. If {a, b} ∈ adj(σ) ∩ P (S), then 

{a, b} ∈ adj(σ ∩ S).
(3) By (2) it is enough to show the inequality Υ(f, σ)|C ≥ Υ(f, σ ∩ C). It suffices to prove that if 

{a, b} ∈ adj(σ ∩C) then {a, b} ∈ adj(σ). Assuming the contrary, let 〈a, x, b〉 for some x ∈ σ with x /∈ {a, b}. 
Then x ∈ [a, b] \ {a, b} ⊂ C by the convexity of C and we get {a, b} /∈ adj(σ ∩ C), a contradiction.

(4) Combine (1) and (3). �
Examples 3.8.

(1) For a linearly ordered set (X, ≤), consider the induced pretree with the median

m(x, y, z) = y ⇔ x ≤ y ≤ z ∨ z ≤ y ≤ x.

Then Υ≤(f) = ΥL(f) = Υ(f). So, in this case, Definitions 3.1, 3.4, 3.3 agree.
(2) Let X = {a, b, c, m} be the “4-element triod”, where m = m(a, b, c) is the only “nontrivial median”. 

Then for every f : X → R, we have

Υ(f) = |f(a) − f(m)| + |f(b) − f(m)| + |f(c) − f(m)|

and ΥL(f) is the maximum between three quantities:
|f(a) − f(m)| + |f(b) − f(m)|, |f(b) − f(m)| + |f(c) − f(m)| and |f(a) − f(m)| + |f(c) − f(m)|. So, in 
general, ΥL(f) < Υ(f).

(3) Let X := {0, 1, · · · } = {0} ∪N. Define the following betweenness relation on X:

〈x, 0, y〉 ∀x �= y ∀x, y ∈ N and 〈x, x, y〉, 〈x, y, y〉 ∀x, y ∈ X.

Then we get a pretree with the median
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m : X3 → X, m(x, y, z) = 0 ∀x �= y �= z �= x,

and m(x, x, y) = m(y, x, x) = m(x, y, x) = x ∀x, y ∈ X. The intervals are [x, y] = [y, x] = {x, 0, y} ∀x �=
y from N, [x, 0] = [0, x] = {x, 0} for every x ∈ N (and of course, [x, x] = {x} ∀x ∈ X). The corresponding 
shadow topology τs is the Alexandrov compactification of the discrete space N adjoining the limit point 
0.
(a) BV (X) �= BV L(X).

Define the characteristic function of the singleton {0}

f : X → R, f(x) = 0 ∀x �= 0, f(0) = 1.

Then Υ(f, σn) = n for every subalgebra σn = {0, 1, · · · , n}. Hence, Υ(f) = ∞. In contrast, the linear 
variation is bounded, ΥL(f) = 2.

(b) The analog of Jordan’s decomposition for the variations in Definitions 3.3, 3.4 is not true for compact 
median pretrees.
Indeed, observe that monotone functions ϕ : X → R have a very special form. Namely, there exists 
a finite subset F (with at most two elements) of N such that ϕ(N \ F ) = ϕ(0). Now, define

f : X → R, f(0) = 0, f(n) = 1
2n ∀n ∈ N.

Then f ∈ BV (X) ⊂ BV L(X) and f is not a difference of any two monotone functions on X.
(4) Let X = [0, 1] × [0, 1] be the square with the l1-metric d1. Then (X, d1) is a metric median space, [4]. It 

gives a median algebra (X, m).
Monotone functions on this median algebra (X, m) are, of course, in BV L but not necessarily in BV . 
Indeed, this happens, for example, for the characteristic function f = χ[ 12 ,1]×[0,1] of the subset [ 12 , 1] ×
[0, 1] of X.

Proposition 3.9. Let X and Y be median pretrees, f : Y → R be a bounded function and h : X → Y be a 
monotone map

X

f◦h

h
Y

f

R

Suppose that σ1 is a finite subalgebra in X and σ2 is a finite subalgebra in Y such that h(σ1) ⊂ σ2. Then 
we have

Υ(f ◦ h, σ1) ≤ Υ(f, σ2) and Υ(f ◦ h) ≤ Υ(f).

Proof. It is enough to show Υ(f ◦ h, σ1) ≤ Υ(f, σ2).
Let {s, t} ∈ adj(σ1). Consider the interval [h(s), h(t)]σ2 which is finite (because σ2 is finite). By 

Lemma 2.3.3 it is a linear subset. Let

[h(s), h(t)]σ2 = {h(s) = y1, y2, · · · , yn−1, yn = h(t)}

be its list of distinct elements linearly ordered according to the direction where h(s) is the smallest element. 
It is possible that {h(s), h(t)} /∈ adj(σ2) (i.e., n > 2).
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For every i < j < k we have 〈yi, yj , yk〉. Say that the doublet {yi, yi+1} (from Y ) is {s, t}-linking, where 
1 ≤ i ≤ n −1. Using Lemma 2.3.2, every {s, t}-linking doublet {yi, yi+1} (where 1 ≤ i ≤ n −1) is σ2-adjacent. 
Clearly,

|(f ◦ h)(s) − (f ◦ h)(t)| = |f(h(s)) − f(h(t))| ≤
n−1∑

i=1
|f(yi) − f(yi+1)|.

Now, in order to check Υ(f ◦ h, σ1) ≤ Υ(f, σ2), it is enough to verify that the h-images of two σ1-adjacent 
doublets cannot contain common linking doublets. For this it is enough to prove the following

Claim. If {s1, t1} ∈ adj(σ1) and {s2, t2} ∈ adj(σ1) then [h(s1), h(t1)]Y and [h(s2), h(t2)]Y are almost dis-
joint.

Proof. First of all note that the subset S := {s1, t1, s2, t2} ⊂ X is linear (in particular, a subalgebra of σ1). 
Indeed, m(s1, t1, s2) ∈ {s1, t1}. Otherwise, {s1, t1} is not adjacent in the subalgebra σ1. This implies that 
s1 ∈ [s2, t1] ∨ t1 ∈ [s1, s2]. Therefore, s1, t1, s2 are collinear in X. Similarly, for any other triple from S. 
Choose one of the two possible compatible directions (linear orders) ≤ on S.

The function h : X → Y is monotone means that h preserves the betweenness relation. Equivalently, 
h([x, y]) ⊂ [h(x), h(y)]. Therefore, h preserves the collinearity of every triple in S. It follows that h(S) is 
also a linear subpretree (in Y ). Fix a linear order � on h(S) which induces the linear betweenness.

Without loss of generality, we can suppose that s1 < t1 ≤ s2 < t2 in S. Then h(s1) � h(t1) � h(s2) �
h(t2) or h(t2) � h(s2) � h(t1) � h(s1). Otherwise, h is not monotone. We provide the verification only for 
the first case because the second case is similar. So, let

h(s1) � h(t1) � h(s2) � h(t2). (3.3)

In order to prove the Claim (completing the proof of Proposition 3.9), it is enough to check

[h(s1), h(t1)]Y ∩ [h(s2), h(t2)]Y ⊆ {h(t1)} ∩ {h(s2)}. (3.4)

The inclusion (3.4) is true by the following arguments. First of all, Equation (3.3) guarantees that h(s2) ∈
[h(t1), h(t2)]. Lemma 2.3.1(b) implies that

[h(s2), h(t2)]Y ⊆ [h(t1), h(t2)]Y . (3.5)

Since h(s1) � h(t1) � h(t2), we have h(t1) ∈ [h(s1), h(t2)]Y . By Lemma 2.3.1(a), we obtain

[h(s1), h(t1)]Y ∩ [h(t1), h(t2)]Y = {h(t1)}. (3.6)

Combining Equations (3.5) and (3.6), we have

[h(s1), h(t1)]Y ∩ [h(s2), h(t2)]Y ⊆ [h(s1), h(t1)]Y ∩ [h(t1), h(t2)]Y = {h(t1)}.

Similarly, by Lemma 2.3.1 and Equation (3.3), we obtain [h(s1), h(t1)]Y ⊆ [h(s1), h(s2)]Y and [h(s1), h(s2)]Y
∩ [h(s2), h(t2)]Y = {h(s2)}. This implies

[h(s1), h(t1)]Y ∩ [h(s2), h(t2)]Y ⊆ [h(s1), h(s2)]Y ∩ [h(s2), h(t2)]Y = {h(s2)}. (3.7)

Finally, Equations (3.6) and (3.7) establish (3.4). �
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Corollary 3.10. Let X be a median pretree.

(1) For every pair of finite subalgebras σ1, σ2 of X with σ1 ⊆ σ2 and every bounded function f : X → R, 
we have Υ(f, σ1) ≤ Υ(f, σ2).

(2) Let h : X → [c, d] ⊂ R be a monotone bounded map on X. Then h ∈ BVr(X), where r = d − c.

Proof. Apply Proposition 3.9 for:
(1) the identity map h = idX and f : X → R.
(2) the map h : X → [c, d] and the inclusion map f : [c, d] ↪→ R. �

Example 3.11. If we allow in Definition 3.3 that the subset σ1 of X is not necessarily a subalgebra, then 
the “monotonicity law” Υ(f, σ1) ≤ Υ(f, σ2) is not true in general. For example, take the 4-element triod 
X = {a, b, c, m} (Example 3.8.2) and define the function

f : X → [−1, 1], f(a) = f(c) = f(m) = 1, f(b) = 0.

Then for the subset σ1 = {a, b, c} (which is not a subalgebra) and σ2 = X, we have Υ(f, σ1) = 2 but 
Υ(f, σ2) = 1.

If X is a median algebra and not necessarily median pretree, then the set M(X) of all monotone maps 
X → R is not necessarily a subset of BV (X), as we see by Example 3.8.4.

Proposition 3.12. Let C1, C2 be convex almost disjoint subsets in a median pretree X. For every bounded 
function f : X → R, denote by f |C1 : C1 → R and f |C2 : C2 → R the restrictions. Then we have

Υ(f) ≥ Υ(f |C1) + Υ(f |C2).

Proof. Let σ1, σ2 be finite subalgebras in X such that σ1 ⊂ C1, σ2 ⊂ C2. It is enough to show that there 
exists a finite subalgebra σ∗ in X such that

Υ(f, σ∗) ≥ Υ(f, σ1) + Υ(f, σ2).

Consider the subalgebra σ∗ := sp(σ1 ∪σ2) of X which is finite by Remark 2.4.5. Then σ∗
1 := σ∗ ∩C1 and 

σ∗
2 := σ∗ ∩ C2 are finite subalgebras in C1 and C2, respectively. Clearly, σ1 ⊂ σ∗

1 , σ2 ⊂ σ∗
2 . By Lemma 3.7

we have

Υ(f, σ∗) ≥ Υ(f, σ∗ ∩ C1) + Υ(f, σ∗ ∩ C1) = Υ(f, σ∗
1) + Υ(f, σ∗

2).

Proposition 3.9 guarantees that Υ(f, σ∗
1) ≥ Υ(f, σ1), Υ(f, σ∗

2) ≥ Υ(f, σ2). So we get Υ(f, σ∗) ≥ Υ(f, σ1) +
Υ(f, σ2), as desired. �
Theorem 3.13. Let X be a median pretree (e.g., dendron or a linearly ordered space) such that its shadow 
topology is compact or Polish. Then every function f : X → R with bounded variation has the point of 
continuity property. It is equivalent to say that f is fragmented (Baire 1 class function, if X is Polish).

Proof. Let f : X → R not satisfy the point of continuity property. That is, f is not fragmented 
(Lemma 2.7.1). Then by Lemma 2.7.3 there exists a closed (necessarily infinite) subspace Y ⊂ X and 
real numbers α < β such that

cl(f−1(−∞, α) ∩ Y ) = cl(f−1(β,∞) ∩ Y ) = Y. (3.8)



12 M. Megrelishvili / Topology and its Applications 285 (2020) 107383
Assuming the contrary let f : X → R have BV. By Definition 3.3, there exists r ∈ R such that

Υ(f) = sup{Υ(f, σ) : σ is a finite subalgebra in X} = r.

Choose a finite subalgebra σ1 ⊂ X such that

r − Υ(f, σ1) < β − α,

where

Υ(f, σ1) =
∑

{a,b}∈adj(σ1)

|f(a) − f(b)|.

By Lemma 2.3.2, co(σ1) = ∪{[ci, cj ] : ci, cj ∈ σ1}. Since σ1 is finite, by Remarks 2.4.4, its convex hull co(σ1)
is closed (hence also compact (or, respectively, Polish) in the subspace topology) in X. We have to check 
two cases.

Case 1: Y ⊆ co(σ1).

In this case, by Lemma 2.7.3 (for the compact (or, Polish) space co(σ1)), we obtain that the restriction 
map f |co(σ1) : co(σ1) → R is not fragmented.

By Corollary 3.10, the variation of the restricted map Υ(f |co(σ1)) ≤ Υ(f) ≤ r is also bounded. On 
the convex subset co(σ1) ⊂ X, the (median) pretree structure induces exactly the subspace topology by 
Lemma 2.3.5.

Every interval [ci, cj ] has a linear order by Lemma 2.3.3 such that two variations defined above are the 
same (Example 3.8.1). By Theorem 3.2 every restriction f |[ci,cj ] has BV. Each of the intervals [ci, cj ] is closed 
in the shadow topology (Remark 2.4.4)). Therefore, by Lemma 2.8 we obtain that f |co(σ1) : co(σ1) → R is 
fragmented. This contradiction shows that Case 1 is impossible.

Case 2: Y � co(σ1).

Choose a point y0 ∈ Y such that y0 /∈ co(σ1). Recall that co(σ1) is closed in X. Every pretree is locally 
convex by Lemma 2.3.4. Therefore, there exists an open neighborhood O of y0 in X such that O is convex 
(one may choose it as a finite intersection of branches) in X and O ∩ co(σ1) = ∅.

Choose u, v ∈ O such that u ∈ f−1(−∞, α) ∩ Y and v ∈ f−1(β, ∞) ∩ Y . Since O is convex, we have 
[u, v] ⊂ O. Then [u, v] ∩ co(σ1) = ∅. Since [u, v] and co(σ1) are disjoint convex subsets in X, we can apply 
Proposition 3.12 which yields

Υ(f) ≥ Υ(f, σ1) + |f(u) − f(v)|.

By our choice of σ1 and r, it follows that r < Υ(f) = r. This contradiction completes the proof. �
Proposition 3.14. Let X be a median pretree. Then BVr(X, [c, d]) is pointwise closed and hence a compact 
subset in [c, d]X .

Proof. Let {fi}i∈I be a net of functions in BVr(X, [c, d]) such that f : X → [c, d] is its pointwise limit. For 
every finite subalgebra σ of X and every i ∈ I, we have

Υ(fi, σ) :=
∑

{a,b}∈adj(σ)

|fi(a) − fi(b)| ≤ r.

Since f is the pointwise limit of {fi}i∈I , we get lim |fi(a) − fi(b)| = lim |f(a) − f(b)| for every given 
{a, b} ∈ adj(σ). This implies that Υ(f, σ) ≤ r for every finite subalgebra σ. Hence, Υ(f) ≤ r. �
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3.3. Generalized Helly’s selection principle

Note that there exists a sequence of functions {fn : [0, 1] → [0, 1]}n∈N without any pointwise convergence 
subsequence. Indeed, the compact space [0, 1][0,1] (and even {0, 1}[0,1]) is not sequentially compact.

Recall the following classical result of Helly, [14,22].

Helly’s Selection Theorem. For every sequence of functions {fn : [a, b] → [c, d]}n∈N with total variation ≤ r, 
there exists a pointwise convergent subsequence.

This result remains true replacing [a, b] by any abstract linearly ordered set as it was proved in [20]. Our 
Theorem 3.13 allows us to prove the following generalization.

Theorem 3.15. (Generalized Helly’s selection theorem) Let X be a Polish median pretree (e.g., dendrite) 
and {fn : X → [c, d]}n∈N be a sequence of real functions which has total bounded variation ≤ r. Then 
there exists a pointwise converging subsequence which converges to a function with variation ≤ r. That is, 
BVr(X, [c, d]) is sequentially compact.

Proof. By Theorem 3.13 the set BVr(X, [c, d]) is a subset of F(X). Since X is Polish we have F(X) = B1(X)
(Lemma 2.7.2). At the same time, BVr(X, [c, d]) is compact (by Proposition 3.14). It is well known that 
by the Bourgain–Fremlin–Talagrand theorem (Lemma 2.7.4) for every Polish X every pointwise compact 
subset of B1(X) is sequentially compact. Hence, BVr(X, [c, d]) is sequentially compact. �
Remark 3.16. There are many natural BV functions on dendrites which are not monotone. For example, 
consider the real triod X = [u, v] ∪ [v, w] ∪ [u, w] ⊂ R2, where [u, v] ∩ [v, w] ∩ [u, w] = {m}. Every “coloring” 
f : X → {1, 2, 3}, provided that every “open arc” (x, y) is monochromatic, is a function with BV. Much 
more generally, f is with BV if and only if every of three restrictions on the corresponding intervals are BV 
functions. However, many such functions are not monotone. For example, if we use all three colors and if 
f(m) �= 2, then f is not monotone.
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